
Two schools of sequence design 

Figure 1. Fast feedback loop with in vitro design. (A) Experimental validation of machine learning using fast in 
vitro cycles. We use HEK293T cells in culture as a surrogate model to evaluate our machine learning methods. This 
surrogate enables rapid iteration of our machine learning design methods. (B) In-vivo validation. We design novel 
capsids for in vivo studies using our best machine learning design methods, which are first de-risked in the in vitro 
setting. 
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VAEProp: Best of both worlds

VAEProp: A method inspired by both philosophies
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Biologically successful ML methods emerge
from rapid in-vitro feedback

Maintains high packaging efficiency   

Designs higher transducing variants compared to baselines   

VAEProp enables robust and controlled exploration

Impact

While integrating data with models presents a huge opportunity for improving AAV capsid properties, designing 
optimized variants for translational applications can be costly and difficult to measure accurately.

In vitro studies can recapitulate critical aspects of the AAV delivery problem and enable more rapid development of 
machine learning (ML) approaches due to faster feedback cycles and lower measurement noise.

Here, we validate an advanced approach to sequence generation that is also tunable, demonstrating the power of a 
coupled experimental and in silico platform and illustrating our improved ability to engineer AAV capsids for 
characterization in non-human primates (NHPs) and eventual translation to human medicines.

Figure 2. ML-guided design with VAEProp. 
(A) The VAEProp architecture. VAEProp jointly trains a model to predict a target property (Regressor) and to reconstruct its original sequence (En-
coder/Decoder). 
(B) Sequence design using VAEProp. We design new sequences by searching in the low-dimensional, continuous latent space of the generative 
model for high scoring sequences. We stop the optimization from generating sequences that are too foreign by rejecting those below a likelihood 
threshold. The threshold is established by evaluating the likelihood of the training data itself under a model fit to the VAE embeddings. The new se-
quences are required to be at least as likely as the pth percentile of the training data, providing a tunable risk parameter. 

Figure 3. Packaging data. (A) VAEProp designs sequences at various edit distances while the VAE is biased towards the edit distance distribution of 
the training data and Regression-based explorers are biased towards high edit distance sequences. (B) VAEProp designed sequences that package at 
a similar rate to sequences designed by generative modeling and at a higher rate than sequences designed by Regression-based explorers. 

Figure 4. In vitro transduction data. We apply VAEProp to optimize the transduction of HEK293T cells in culture by designing variants of wild-type 
AAV9 in an area comprising of the VR-IV and VR-V loops of the VP3 region. Sequences designed by VAEProp have a higher transduction rate than 
sequences designed by a VAE or a Regression-based explorer. Each method received a budget of 8k variants.

Figure 5. Sequence design using VAEProp. 
VAEProp allows the user to take risks between 
designing variants that are similar to those in the 
data or venturing deeper into the sequence 
space for potentially higher gains. We consider 
three flavors of our risk parameter to test the 
performance of the approach in conservative 
and high-risk explorations.

Figure 6.  Experimental validation of risk-reward tradeoff. As a follow-up in vitro transduction experiment, we evaluated how this risk 
parameter translates to different packaging and transduction rates. Each method received a budget of 2k variants. (A) High risk setting 
translates to designed sequences with higher edit distance to wildtype. (B) Transduction rates for high risk sequences are harder to 
predict (y-axis) and result in fewer packaged variants (x-axis). (C) High-risk sequences have higher transduction upside on the tail of the 
distribution despite lower predictive accuracy.

• VAEProp is a machine learning method for protein design that combines the best aspects of generative modeling and 
regression-based explorers and experimentally validated with AAVs using a fast experimental transduction feedback loop. Here we 
show the results for validation in cell culture, and experiments are now ongoing in NHPs

• This method enables controlled exploration by exposing a risk parameter that the user can tune depending on the scenario, 
including adapting it for experimental scenarios with differential time and resource costs

• VAEprop is one of the methods that enables Dyno to deliver high-performing capsids optimized across multiple properties to our 
partners towards improving the safety and efficacy of gene therapy products
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Method Advantages Disadvantages

Generative
modeling,
e.g., Variational
Autoencoders
(VAEs)

Regression-
based explorers

• Faithfully recapitulates 
  important features in the
  data
• High packaging efficiency
• Better handling of noise

• High transduction potential
• Novel variant generation

• Low packaging efficiency
• High false positive rate
• Unlikely to work well with noisy 
  measurements
• Inefficient optimization

• Lower transduction potential
• Unlikely to generate variants 
  different from what’s observed in
  the data

Table 1. Trade-offs between the two dominant paradigms for ML-based sequence design.
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